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ABSTRACT: We report on the unusual response of a well-
characterized entangled comb polymer in simple shear flow.
The polymer with highly entangled backbone (about 16
entanglements) and on average 29 long branches (about 3
entanglements each) has been extensively characterized by
interaction chromatography and its rheology carefully studied
under controlled conditions using a special cone partitioned−
plate geometry. We observe that the start-up shear stress
becomes roughly rate independent above a certain critical rate,
related to the relaxation time of the branches. Within the rate-
independent region, the start-up shear stress displays a double overshoot. We interpret these observations in light of tube-based
pompom dynamics. The key idea is that for sufficiently long branches the main stress overshoot, which reflects backbone
stretching and orientation, is preceded by the withdrawal of branches into the backbone tube. The excellent quantitative
comparison between the simulations and experiments supports the proposed mechanism of the double stress overshoot.

Entanglement dynamics remains a challenging topic in
polymer science.1 The tube model originating from de

Gennes2 and Doi and Edwards3 constitutes the basis for
interpreting stress relaxation. The model was originally
developed to describe the response of linear monodisperse
polymers, but its current ramifications include accurate, nearly
parameter-free predictions for the linear and nonlinear
deformations of linear and architecturally complex polymers
of varying polydispersity.1,4−7 On the experimental side,
advances in synthesis, characterization, and rheometry offer
the possibility to obtain reliable information on the rheology of
well-defined model polymers.8−14 Despite these developments,
in some respects the field is still at its infancy: in particular,
linking molecular characteristics to the nonlinear rheological
response, which is crucially important, has not been explored
much yet; hence, the road toward a full understanding of the
behavior of complex polymers in complex flows is still long.1,14

The start-up behavior of linear entangled polymers in simple
shear has been studied quite extensively.5,8,9,15,16 At rates below
the inverse terminal relaxation time of the polymer 1/τ0, the
transient viscosity follows a monotonic increase toward the
steady state, following the linear viscoelastic (LVE) behavior. At
rates between 1/τ0 and the inverse Rouse time of the polymer
(1/τR), the transient viscosity displays an overshoot before
reaching a steady value, below the LVE one. This overshoot
arises due to orientation of the chain in the flow direction, and
the strain at the peak viscosity γMAX occurs at a constant value

of about 2.3. At rates above 1/τR, the overshoot becomes more
prominent, while the steady viscosity is further reduced. The
strain at the peak γMAX is no longer constant but proportional
to the rate. Here, the combined action of stretch and
orientation of the linear polymer governs the overshoot.5

Tube models accounting for chain orientation alone do not
predict a steady state for the viscosity at high shear rates. An
additional mechanism, termed convective constraint release
(CCR), has to be invoked to predict the steady-state and shear-
thinning behavior of the viscosity in fast shear flows.17

There is only fragmental information in the literature on the
shear flow of model branched polymers. The start-up and
relaxation of stress of well-characterized comb polymers in
simple shear was recently reported.10 Such systems with several
(about 30) but reasonably small branches (not exceeding two
entanglements) and well-entangled backbones (about 16
entanglements) were found to respond like entangled linear
polymers, when the dynamic dilution of the branches was
accounted for. The overshoot of transient stress at large rates
reflected backbone stretch and orientation. This main result
was consistent with the behavior of the same and other
branched polymers with more than one branch point (e.g.,
pompom) in uniaxial extension, as observed experimentally18,19
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and recently analyzed using tube-model arguments.20 On the
other hand, experimental start-up shear curves with highly
branched commercial polymers (styrene-butadiene rubber,
SBR) displayed multiple peaks,21 which were found to relax
and reappear only after long resting times and rationalized by
invoking the pompom model and the idea of arm withdrawal.22

In view of this, the fundamental question is whether a more
complex response of entangled comb polymers emerges as their
branches become larger and how this could be explained at the
molecular level.
In this letter, we report on the start-up simple shear flow

behavior of a well-defined, comb polymer with long branches. It
is similar to those studied recently10 but has longer branches
(about three entanglements). This polystyrene comb (coded as
PS c642)11−13 was synthesized by Roovers using high-vacuum
anionic polymerization.11 It has a very narrow distribution with
a backbone molar mass Mbackbone of 275 kg/mol and an average
of 29 branches randomly grafted on the backbone, each having
a molar mass of 47 kg/mol. Its linear viscoelastic response has
been studied in great detail and was found to be governed by
hierarchical relaxation and dynamic dilution.12,13 We performed
an extensive physicochemical characterization using both the
conventional size-exclusion chromatography (SEC) and tem-
perature-gradient interaction chromatography (TGIC),23,24 as
well as linear oscillatory rheometry. TGIC is known to be
extremely sensitive to side products produced during the
synthesis of the comb polymer. The experimental details for the
chromatography are identical to those in ref 10. The
chromatograms are shown in Figure 1. The weight-averaged

molar mass Mw obtained from the SEC analysis is 1640 kg/mol,
and the polydispersity index is 1.003 (as determined by light-
scattering detection with band broadening correction), in
agreement with refs 10 and 11, indicating that the sample is still
intact, while its architectural dispersity is small so that we can
safely consider the target molecular structure in our analysis.
At 169.5 °C, the comb has a zero-shear viscosity η0 of (5.8 ±

0.2) × 105 Pa·s and a recoverable compliance JS
0 of (17.6 ±

0.9) × 10−5 Pa−1, leading to a longest relaxation time τ0 = η0JS
0

of 102 ± 6 s. The relaxation time of the branches is about 0.5
s.13 This comb is specific in the sense that the amount of
branching is very high; in fact, the volume fraction of backbone
in the molecule is only 16%, while the relaxation times of
branches and backbone remain well-separated. The hierarchical
relaxation principle4 indicates that, after their relaxation, the
branches act as effective solvent for the backbone (note that we
consider full dynamic dilution, although in reality this is not
entirely correct25). In this sense, the high amount of branching
implies that the number of entanglements of the backbone after
relaxation of the branches is very low, only 2.5 (assuming a
dynamic dilution exponent of 1 and a molar mass between
entanglements Me of 17 kg/mol12,13). In the linear response,
this manifests itself as an apparent Rouse-like relaxation region
for the backbone (i.e., G′ ≈ G″ ∼ ω0.5).12,13

The nonlinear shear flow of polymer melts is known to be
prone to instabilities. To minimize those problems, we
employed a homemade cone-partitioned plate (CPP)16

inspired by the pioneering works of Meissner26 and
Schweizer.15 The CPP delays pronounced effects of edge
fracture on nonlinear measurements and also to some extent
minimizes wall slip.15,27 Our setup has been successfully
employed recently to study entangled linear and comb
polymers with shorter branches.10,16

Figure 2 shows the start-up shear viscosity η+ as a function of
time t (Figure 2a) and the shear stress σ+ versus strain γ (Figure

2b) for different rates. The blue lines are obtained at 169.5 °C
and the red lines at 160 °C, and they are shifted using the
time−temperature shift factors from the linear data.13 The
black line in Figure 2a is the LVE line obtained from the
frequency sweep data12 as in ref 10. The nonlinear data follows
the LVE line for low rates and strains. Qualitatively, for rates

Figure 1. Chromatograms from SEC (a) and TGIC analysis (b).
Figure 2. Start-up shear viscosity η+ versus time t (a) and stress σ+

versus strain γ (b) at 169.5 °C. The blue lines are obtained at 169.5 °C
and the red lines at 160 °C and shifted. The shear rates are indicated
(in s−1) next to the lines as “imposed rate... rate shifted to 169.5°C″.
The black line in (a) is the LVE line. The vertical straight lines in (b)
are guides to the eye.

ACS Macro Letters Letter

dx.doi.org/10.1021/mz400236z | ACS Macro Lett. 2013, 2, 601−604602



below ∼2 s−1, one can observe a single peak, much like the
situation for linear polymers8,9,16 and combs with short
branches.10 At higher rates, an additional peak appears before
the main one, which develops more clearly upon increasing
rate. A plot of stress as a function of strain, as in Figure 2b,
shows that both the stress and position of the peaks become
roughly independent of rate (between ∼3 and 30 s−1). It is
important to note in relation to the linear relaxation behavior
that the rate of ∼2 s−1 is around the relaxation time of the
branches.
Figure 3 shows the position of the two peaks γMAX as a

function of shear rate. One can observe that initially the

(single) peak strain increases fast with rate, not necessarily with
the same slope of linear polymers,16 after which it levels off
toward a constant value of 12−13, while an additional peak
(from the branches) appears at a constant strain of about 2, the
value for tube orientation. Finally, at the highest few rates both
peaks can be observed to increase. The observed behavior for
the peak strain (Figure 3) and the rate independence of start-up
shear stress (Figure 2b) can be qualitatively explained by
invoking the branch withdrawal idea, as done for SBR and
schematically presented in Figure 4a.7,22 We note that a double
stress overshoot was reported for fast shear flows of bidisperse
polymers when the stretch time of the larger component
exceeded the terminal time of the shorter one.28 The analogy
with combs is the broad relaxation spectrum, but the
phenomenology is different (the overshoots occurred at nearly
constant time instead of strain, and a rate-independent region
of the stress was never observed) and rationalized by weighting
the stress contributions of the two components.29

To simulate the rate-independent behavior shown by the
data in the neighborhood of 10 s−1 (Figures 2b and 3), we have
developed the following statistical model. The model
concentrates on the dynamics and stress contribution of the
backbone only since the branches simply obey the Doi−
Edwards orientation statistics, and their contribution to the
stress can be added accordingly. Although the terminal
relaxation time of the branches is (as previously men-
tioned13,25) large enough for the whole branches not to act
as solvent, the end part of them is in fact free to fluctuate in the
shear rate range considered. The solvent fraction affects the
initial slope of the start-up curve (i.e., the initial level in a log−
log plot), and we have therefore estimated that such a fraction
is 0.3 (over a total branch fraction of 0.84). As a consequence,

for each molecule of the statistical ensemble, the initial
conformation is a random walk of Mbackbone/(Me/0.7) steps
(with a dynamic dilution exponent of 1), simulating the
backbone tube at equilibrium. Backbone tubes then start
deforming by small deformation increments, and all entangle-
ments move affinely in space. The tube length increases with
increasing deformation; i.e., the backbone gets stretched, and
the tension in the backbone segments increases above the
equilibrium value. Sufficiently large values of the tension
determine arm withdrawal (Figure 4a).7,22 The upper limit of
tension is twice the equilibrium value for the two end segments
of the backbone, three times the equilibrium value for the two
next-to-end segments, four times for the next ones, and so forth
up to 14 times the equilibrium tension for the middle segments
of the 29-arm comb polymer. The shear stress contributed by
the backbone then results from the combination of both stretch
and orientation. The former monotonically increases up to
saturation (when all branches are withdrawn), while the latter
goes through the Doi−Edwards maximum at a strain of 2.3.
The combined effect is a maximum occurring at a strain of
about 10 (when non-Gaussian effects are accounted for), as
shown in Figure 4b. The black curve in Figure 4b arises from
the model as described above, to which the contribution of the
orienting part of the branches has also been added
(determining the shoulder in the stress at a strain of about
2.3). The red curve was obtained by including the effect of
CCR. Indeed, without CCR the stress asymptotically
approaches zero due to complete alignment to the shear
direction in the basic Doi−Edwards theory. Inclusion of CCR
requires one additional parameter, and we have here used the
classical value17 β = 0.5 that nicely fits the asymptotic value
shown by the data at 10 s−1. CCR is implemented in the code
both by including a β-dependent probability of losing
entanglements (which somewhat relaxes the backbone stretch)
and by explicitly correcting for the nonaffine orientation in the

Figure 3. Strain at the peaks γMAX versus shear rate at 169.5 °C. The
blue symbols are obtained at 169.5 °C and the red symbols at 160 °C
and shifted. The open and closed symbols correspond to the peak
from the backbone and branches, respectively. Horizontal lines are
guides to the eye.

Figure 4. (a) Schematic representation of the branch withdrawal
process. (b) Comparison between the data at a rate of 10 s−1 (black
circles) and results of the simulations obtained with a dynamic dilution
“solvent” fraction of 0.3. The red and black lines are for the
simulations including CCR (with β = 0.5) and without CCR,
respectively.
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stress. The simulated curve including CCR fits the data
throughout, except for the undershoot shown by the data soon
after the maximum.
One may further note that, while the location of the

maximum remains fixed in the shear rate range considered, a
weak rate dependence of the stress can be observed in Figure
2b, which is probably a signature of the rate dependence of the
dynamic dilution of the outer parts of the branches (previously
set to 0.3). To the left of the rate-independent region in Figure
3, the location of the maximum declines toward the purely
orientational location (i.e., a strain of about 2.3), to eventually
disappear altogether when the terminal relaxation is ap-
proached. To the right of the rate-independent region, i.e.,
for very large shear rates, a stretch of the arms appears to occur,
determining a significant enhancement of the stress (Figure
2b). The shoulder contributed by the arms evolves toward a
well-defined “first” maximum. Quantitative models for these
regions have not yet been developed.
In conclusion, we have shown unambiguous evidence from

experiments and simulations of the complex two-step stress
evolution during start-up of simple shear flow of model comb
polymers at high shear rates. It occurs only when the branches
are sufficiently long, clearly more than two entanglement
lengths, reasonably high in number (accounting for about 80%
of the molar mass), and at rates exceeding the inverse of the
relaxation time of the branches. Although our quantitative
interpretation is sound, it involves some degree of speculation,
and hence further work is needed to test it thoroughly.
Nevertheless, these findings could provide a framework for
understanding the complex nonlinear shear response of
branched polymers. It would be interesting to test the observed
phenomena as to their dependence on molecular parameters in
a more systematic way and further make a link with the
nonlinear response of commercial branched polymers and
networks.21,30
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